YOLOv5改进前后曲线对比图:mAP50,mAP50-90,Loss

YOLOv5改进前后曲线对比图:mAP50,mAP50-90,Loss

提供两个代码:

代码1:在YOLOv5根目录下创建一个py文件,代码如下:

import pandas as pd

import matplotlib.pyplot as plt

# Function to clean column names

def clean_column_names(df):

df.columns = df.columns.str.strip()

df.columns = df.columns.str.replace('\s+', '_', regex=True)

#nonoresult.csv表示原始的结果图,csv文件在runs/train/exp中

original_results = pd.read_csv("D:/pycharm/PythonProject/yolov5/runs/train/exp/result1.csv")

#yesyesresult.csv表示提高后的结果图,csv文件在runs/train/exp中

improved_results = pd.read_csv("D:/pycharm/PythonProject/yolov5/runs/train/exp/result2.csv")

# Clean column names

clean_column_names(original_results)

clean_column_names(improved_results)

# Plot mAP@0.5 curves

plt.figure()

#lable属性为曲线名称,自己可以定义

plt.plot(original_results['metrics/mAP_0.5'], label="Original YOLOv5")

plt.plot(improved_results['metrics/mAP_0.5'], label="Improved YOLOv5")

plt.xlabel("Epoch")

plt.ylabel("mAP@0.5")

plt.legend()

plt.title("mAP@0.5 Comparison")

plt.savefig("mAP_0.5_comparison.png")

# Plot mAP@0.5:0.95 curves

plt.figure()

plt.plot(original_results['metrics/mAP_0.5:0.95'], label="Original YOLOv5")

plt.plot(improved_results['metrics/mAP_0.5:0.95'], label="Improved YOLOv5")

plt.xlabel("Epoch")

plt.ylabel("mAP@0.5:0.95")

plt.legend()

#图的标题

plt.title("mAP@0.5:0.95 Comparison")

#图片名称

plt.savefig("mAP_0.5_0.95_comparison.png")

其中:result1.csv是原始结果;result2.csv是改进后的结果

运行该代码,结果如下:

代码2:新建一个.py文件,代码如下:

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

if __name__ == '__main__':

# 列出待获取数据内容的文件位置

# v5、v8都是csv格式的,v7是txt格式的

result_dict = {

'CIOU': r'D:/pycharm/Python练习项目/picture/pictur/result/CIOU.csv',

'EIOU': r'D:/pycharm/Python练习项目/picture/pictur/result/EIOU.csv',

'DIOU': r'D:/pycharm/Python练习项目/picture/pictur/result/DIOU.csv',

'SIOU': r'D:/pycharm/Python练习项目/picture/pictur/result/SIOU.csv',

}

# 绘制map50

for modelname in result_dict:

res_path = result_dict[modelname]

ext = res_path.split('.')[-1]

if ext == 'csv':

data = pd.read_csv(res_path, usecols=[6]).values.ravel() # 6是指map50的下标(每行从0开始向右数)

else: # 文件后缀是txt

with open(res_path, 'r') as f:

datalist = f.readlines()

data = []

for d in datalist:

data.append(float(d.strip().split()[10])) # 10是指map50的下标(每行从0开始向右数)

data = np.array(data)

x = range(len(data))

plt.plot(x, data, label=modelname, linewidth='1') # 线条粗细设为1

# 添加x轴和y轴标签

plt.xlabel('Epochs')

plt.ylabel('mAP@0.5')

plt.legend()

plt.grid()

# 显示图像

plt.savefig("mAP50.png", dpi=600) # dpi可设为300/600/900,表示存为更高清的矢量图

plt.show()

# 绘制map50-95

for modelname in result_dict:

res_path = result_dict[modelname]

ext = res_path.split('.')[-1]

if ext == 'csv':

data = pd.read_csv(res_path, usecols=[7]).values.ravel() # 7是指map50-95的下标(每行从0开始向右数)

else:

with open(res_path, 'r') as f:

datalist = f.readlines()

data = []

for d in datalist:

data.append(float(d.strip().split()[11])) # 11是指map50-95的下标(每行从0开始向右数)

data = np.array(data)

x = range(len(data))

plt.plot(x, data, label=modelname, linewidth='1')

# 添加x轴和y轴标签

plt.xlabel('Epochs')

plt.ylabel('mAP@0.5:0.95')

plt.legend()

plt.grid()

# 显示图像

plt.savefig("mAP50-95.png", dpi=600)

plt.show()

# 绘制训练的总loss

for modelname in result_dict:

res_path = result_dict[modelname]

ext = res_path.split('.')[-1]

if ext == 'csv':

box_loss = pd.read_csv(res_path, usecols=[1]).values.ravel()

obj_loss = pd.read_csv(res_path, usecols=[2]).values.ravel()

cls_loss = pd.read_csv(res_path, usecols=[3]).values.ravel()

data = np.round(box_loss + obj_loss + cls_loss, 5) # 3个loss相加并且保留小数点后5位(与v7一致)

else:

with open(res_path, 'r') as f:

datalist = f.readlines()

data = []

for d in datalist:

data.append(float(d.strip().split()[5]))

data = np.array(data)

x = range(len(data))

plt.plot(x, data, label=modelname, linewidth='1')

# 添加x轴和y轴标签

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.grid()

# 显示图像

plt.savefig("loss.png", dpi=600)

plt.show()

运行该代码:结果如下:

参考博客:用代码yolov5生成改进前后map曲线对比图,map0.5,map0.5:0.95,很简单,小白都能看懂!_map yolov5_qq_42366162的博客-CSDN博客

加油!!

相关推荐